Susan Lindauer: Bush Regime Rejected Iraq Peace Option

wordpress analytics

Susan Lindauer was a back channel CIA asset who negotiated with Saddam Hussein in the run up to the Iraq War. She was an outspoken proponent for the Peace Option that was ultimately rejected by the Bush Regime. Saddam had offered to buy 1 million cars a year for 10 years and promised the US favorable contracts in pharmaceuticals & medical equipment. Saddam agreed to cooperate against terrorism by letting the FBI into Baghdad 6 months before 9/11 and he even offered to retire to an island to avoid the War.

Lindauer was outspoken in her criticism of the war and for her efforts she ended up becoming a political prisoner at Carswell Air Force Base. Susan was also a speaker at the Vancouver Hearings last year. She revealed that the CIA had information in February 2001 that the Twin Towers were going to be nuked. She has a book available on Amazon: Extreme Prejudice: The Terrifying Story of the Patriot Act and the Cover Ups of 9/11 and Iraq.

She was in the Twin Cities recently and appeared on a local cable access show that you can view below on YouTube.

Here is Susan’s intro:

Most of you know I was the Chief U.S. Asset covering the Iraqi Embassy at the United Nations for 7 years before the War. You know I was subsequently arrested on the Patriot Act, locked up on Carswell Air Force Base, and threatened with forcible drugging to silence me, when the Bush cabal decided to blame Pre-War Intelligence for their catastrophic decision to go to War.

On the 10 year anniversary of the start of the War, it’s worth examining the comprehensive peace option hammered out in the two year run up to the invasion. I was traveling in Minnesota this week for speaking engagements. In a television interview, I discussed the peace option at length.

I hope it will persuade the world to give diplomacy a chance to forestall confrontation with Iran in the months ahead. It’s never so hopeless as you might think.

Jim Fetzer Real Deal Appearance 3/25/13: Evidence of Ternary Fission at Ground Zero

wordpress analytics

Most 9/11 researchers lack a basic understanding of nuclear physics. This lack of physics knowledge has allowed people like Steve Jones and Judy Wood to obfuscate the destruction of the WTC buildings with bogus claims of nanothermite and DEWs. After reading the tutorial below a researcher should have a sufficient grasp of nuclear physics to be able to determine that nuclear fission occurred at Ground Zero. The chemistry table of the USGS Environmental Studies of the World Trade Center Area After the September 11, 2001 Attack (Open-File Report 01-0429) provides irrefutable proof that fission occurred at Ground Zero.

Click here for the sample location map.

The .mp3 for this show is available here. Right click Save target as… to download the .mp3

periodic_table-colorRead the points below then the slides from Jeff Prager’s Vancouver PowerPoint presentation are more easily understood.

1. Nuclear physics is the field of study that concentrates on understanding the atomic nucleus. http://www.universetoday.com/56750/atomic-nucleus/#ixzz2MLJsgkby

2. The diameter of an atoms nucleus varies a great deal: a hydrogen nucleus, the lightest atom, is about 1.6 x 10-15m while the nucleus of the atoms of the heaviest elements can have a diameter of 15 x 10-15m. http://www.universetoday.com/56750/atomic-nucleus/#ixzz2MLJsgkby

3. The atomic nucleus is a tiny massive entity at the center of an atom. Occupying a volume whose radius is 1/100,000 the size of the atom, the nucleus contains most (99.9%) of the mass of the atom. http://www.chemistryexplained.com/Ar-Bo/Atomic-Nucleus.html

4. Proton – Along with neutrons, protons make up the nucleus, held together by the strong force. The proton is a baryon and is considered to be composed of two up quarks and one down quark. It has long been considered to be a stable particle, but recent developments of grand unification models have suggested that it might decay with a half-life of about 1032 years. Experiments are underway to see if such decays can be detected. Decay of the proton would violate the conservation of baryon number, and in doing so would be the only known process in nature which does so.

protonhttp://hyperphysics.phy-astr.gsu.edu/hbase/particles/proton.html#c1

5. Neutron: Along with protons, neutrons make up the nucleus, held together by the strong force. The neutron is a baryon and is considered to be composed of two down quarks and one up quark. A free neutron will decay with a half-life of about 10.3 minutes but it is stable if combined into a nucleus. The decay of the neutron involves the weak interaction as indicated in the Feynman diagram below. This fact is important in models of the early universe. The neutron is about 0.2% more massive than a proton, which translates to an energy difference of 1.29 MeV.

neutrondecneu

6. The decay of the neutron is associated with a quark transformation in which a down quark is converted to an up by the weak interaction. The average lifetime of 10.3 min/0.693 = 14.9 minutes is surprisingly long for a particle decay that yields 1.29 MeV of energy. You could say that this decay is steeply “downhill” in energy and would be expected to proceed rapidly. It is possible for a proton to be transformed into a neutron, but you have to supply 1.29 MeV of energy to reach the threshold for that transformation. In the very early stages of the big bang when the thermal energy was much greater than 1.29 MeV, we surmise that the transformation between protons and neutrons was proceeding freely in both directions so that there was an essentially equal population of protons and neutrons. http://hyperphysics.phy-astr.gsu.edu/hbase/particles/proton.html#c3

7. When we say that a proton is made up of two up quarks and a down, we mean that its net appearance or net set of quantum numbers match that picture. The nature of quark confinement suggests that the quarks are surrounded by a cloud of gluons, and within the tiny volume of the proton other quark-antiquark pairs can be produced and then annihilated without changing the net external appearance of the proton. http://hyperphysics.phy-astr.gsu.edu/hbase/particles/proton.html#c3

8. The nucleus is composed of protons (charge = +1; mass = 1.007 atomic mass units ([μ]) and neutrons. The number of protons in the nucleus is called the atomic number (Z) and defines which chemical element the nucleus represents. The number of neutrons in the nucleus is called the neutron number (N), whereas the total number of neutrons and protons in the nucleus is referred to as the mass number (A), where A = N + Z. The neutrons and protons are referred to collectively as nucleons. A nucleus with a given N and Z is referred to as a nuclide. Nuclides with the same atomic number are isotopes, such as 12 C and 14 C, whereas nuclides with the same N, such as 14 C and 16 O, are called isotones. Nuclei such as 14 N and 14 C, which have the same mass number, are isobars. Nuclides are designated by a shorthand notation in which one writes, that is, for a nucleus with 6 protons and 8 neutrons, one writes, or just 14 C. The size of a nucleus is approximately 1 to 10 × 10 −15 m, with the nuclear radius being represented more precisely as 1.2 × A 1/3 × 10 −15 m. We can roughly approximate the nucleus as a sphere and thus we can calculate its density where 1.66 × 10 −27 kg is the mass of the nucleon. Thus the nuclear density is about 200,000 tons/mm 3 and is independent of A. Imagine a cube that is 1 mm on a side. If filled with nuclear matter, it would have a mass of about 200,000 tons. This calculation demonstrates the enormous matter/energy density of nuclei and gives some idea as to why nuclear phenomena lead to large energy releases. http://www.chemistryexplained.com/Ar-Bo/Atomic-Nucleus.html

9. Of the 6,000 species of nuclei that can exist in the universe, about 2,700 are known, but only 270 of these are stable. The rest are radioactive, that is, they spontaneously decay. The driving force behind all radioactive decay is the ability to produce products of greater stability than one had initially. In other words, radioactive decay releases energy and because of the high energy density of nuclei, that energy release is substantial. Qualitatively we describe radioactive decay as occurring in three general ways: α -, β -, and γ -decay. Alpha-decay occurs in the heavy elements, and consists of the emission of a 4 He nucleus. Beta-decay occurs in nuclei whose N/Z ratio is different from that of a stable nucleus and consists of a transformation of neutrons into protons or vice versa to make the nucleus more stable. Gamma-decay occurs when excited nuclei get rid of some or all of their excitation energy via the emission of electromagnetic radiation, or via the radiationless transfer of energy to orbital electrons. http://www.chemistryexplained.com/Ar-Bo/Atomic-Nucleus.html

10. If a massive nucleus like uranium-235 breaks apart (fissions), then there will be a net yield of energy because the sum of the masses of the fragments will be less than the mass of the uranium nucleus. If the mass of the fragments is equal to or greater than that of iron at the peak of the binding energy curve, then the nuclear particles will be more tightly bound than they were in the uranium nucleus, and that decrease in mass comes off in the form of energy according to the Einstein equation. For elements lighter than iron, fusion will yield energy. http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/fission.html

11. In one of the most remarkable phenomena in nature, a slow neutron can be captured by a uranium-235 nucleus, rendering it unstable toward nuclear fission. A fast neutron will not be captured, so neutrons must be slowed down by moderation to increase their capture probability in fission reactors. A single fission event can yield over 200 million times the energy of the neutron which triggered it!

fis2http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/fission.html#c2

12. For a chain reaction of nuclear fission, such as that of uranium-235, is to sustain itself, then at least one neutron from each fission must strike another U-235 nucleus and cause a fission. If this condition is just met, then the reaction is said to be “critical” and will continue. The mass of fissile material required to achieve this critical condition is said to be a critical mass. The critical mass depends upon the concentration of U-235 nuclei in the fuel material as well as its geometry. As applied for the generation of electric energy in nuclear reactors, it also depends upon the moderation used to slow down the neutrons. In those reactors, the critical condition also depends upon neutrons from the fission fragments, called delayed neutrons. For weapons applications, the concentration U-235 must be much higher to create a condition called “prompt criticality”. This means that it is critical with only the neutrons directly produced in the fission process. For U-235 enriched to “bomb-grade” uranium, the critical mass may be as small as about 15 kg in a bomb configuration. http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/moder.html#c1

13. Fissionable Isotopes: While uranium-235 is the naturally occurring fissionable isotope, there are other isotopes which can be induced to fission by neutron bombardment. Plutonium-239 is also fissionable by bombardment with slow neutrons, and both it and uranium-235 have been used to make nuclear fission bombs. Plutonium-239 can be produced by “breeding” it from uranium-238. Uranium-238, which makes up 99.3% of natural uranium, is not fissionable by slow neutrons. U-238 has a small probability for spontaneous fission and also a small probability of fission when bombarded with fast neutrons, but it is not useful as a nuclear fuel source. Some of the nuclear reactors at Hanford, Washington and the Savannah-River Plant (SC) are designed for the production of bomb-grade plutonium-239. Thorium-232 is fissionable, so could conceivably be used as a nuclear fuel. The only other isotope which is known to undergo fission upon slow-neutron bombardment is uranium-233. http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/fission.html#c2

14. Uranium Fuel: Natural uranium is composed of 0.72% U-235 (the fissionable isotope), 99.27% U-238, and a trace quantity 0.0055% U-234. The 0.72% U-235 is not sufficient to produce a self-sustaining critical chain reaction in U.S. style light-water reactors, although it is used in Canadian CANDU reactors. For light-water reactors, the fuel must be enriched to 2.5-3.5% U-235. Uranium is found as uranium oxide which when purified has a rich yellow color and is called “yellowcake”. After reduction, the uranium must go through an isotope enrichment process. Even with the necessity of enrichment, it still takes only about 3 kg of natural uranium to supply the energy needs of one American for a year. http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/fission.html#c2

15. Beta decay: Beta particles are electrons or positrons (electrons with positive electric charge, or anti-electrons). Beta decay occurs when, in a nucleus with too many protons or too many neutrons, one of the protons or neutrons is transformed into the other. In beta minus decay, a neutron decays into a proton, an electron, and an anti-neutrino: n Æ p + e – +. In beta plus decay, a proton decays into a neutron, a positron, and a neutrino: p Æ n + e+ +n. Both reactions occur because in different regions of the Chart of the Nuclides, one or the other will move the product closer to the region of stability. These particular reactions take place because conservation laws are obeyed. Electric charge conservation requires that if an electrically neutral neutron becomes a positively charged proton, an electrically negative particle (in this case, an electron) must also be produced. Similarly, conservation of lepton number requires that if a neutron (lepton number = 0) decays into a proton (lepton number = 0) and an electron (lepton number = 1), a particle with a lepton number of -1 (in this case an antineutrino) must also be produced. The leptons emitted in beta decay did not exist in the nucleus before the decay–they are created at the instant of the decay.

16. To the best of our knowledge, an isolated proton, a hydrogen nucleus with or without an electron, does not decay. However within a nucleus, the beta decay process can change a proton to a neutron. An isolated neutron is unstable and will decay with a half-life of 10.5 minutes. A neutron in a nucleus will decay if a more stable nucleus results; the half-life of the decay depends on the isotope. If it leads to a more stable nucleus, a proton in a nucleus may capture an electron from the atom (electron capture), and change into a neutron and a neutrino.

17. Proton decay, neutron decay, and electron capture are three ways in which protons can be changed into neutrons or vice-versa; in each decay there is a change in the atomic number, so that the parent and daughter atoms are different elements. In all three processes, the number A of nucleons remains the same, while both proton number, Z, and neutron number, N, increase or decrease by 1.

18. In beta decay the change in binding energy appears as the mass energy and kinetic energy of the beta particle, the energy of the neutrino, and the kinetic energy of the recoiling daughter nucleus. The energy of an emitted beta particle from a particular decay can take on a range of values because the energy can be shared in many ways among the three particles while still obeying energy and momentum conservation.

(15-18) http://www.lbl.gov/abc/wallchart/chapters/03/2.html

19. Beta Radioactivity: Beta particles are just electrons from the nucleus, the term “beta particle” being an historical term used in the early description of radioactivity. The high energy electrons have greater range of penetration than alpha particles, but still much less than gamma rays. The radiation hazard from betas is greatest if they are ingested.

radioact

Beta emission is accompanied by the emission of an electron anti-neutrino which shares the momentum and energy of the decay.

betarad

The emission of the electron’s antiparticle, the positron, is also called beta decay. Beta decay can be seen as the decay of one of the neutrons to a proton via the weak interaction. The use of a weak interaction Feynman diagram can clarify the process.

betawhttp://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/beta.html#c1

20. Fission Fragments: When uranium-235 undergoes fission, the average of the fragment mass is about 118, but very few fragments near that average are found. It is much more probable to break up into unequal fragments, and the most probable fragment masses are around mass 95 and 137. Most of these fission fragments are highly unstable (radioactive), and some of them such as cesium-137 and strontium-90 are extremely dangerous when released to the environment. frag1http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/fisfrag.html#c1

21. Cesium-137 and strontium-90 are the most dangerous radioisotopes to the environment in terms of their long-term effects. Their intermediate half-lives of about 30 years suggests that they are not only highly radioactive but that they have a long enough half-life to be around for hundreds of years. Iodine-131 may give a higher initial dose, but its short half-life of 8 days ensures that it will soon be gone. Besides its persistence and high activity, cesium-137 has the further insidious property of being mistaken for potassium by living organisms and taken up as part of the fluid electrolytes. This means that it is passed on up the food chain and re-concentrated from the environment by that process.

Cesium-137 decay has a half-life of 30.07 years and proceeds by both beta decay and gamma emission from an intermediate state. Both the electron and gamma emissions are highly ionizing radiation. The gamma radiation is very penetrating, and the beta radiation, though very short range, is very dangerous when ingested because it deposits all that energy in a very short distance in tissue.

cs137decay22. Cesium’s danger as an environmental hazard, damaging when ingested, is made worse by its mimicking of potassium’s chemical properties. This ensures that cesium as a contaminant will be ingested, because potassium is needed by all living things. http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/fisfrag.html#c4

23. Strontium-90 and cesium-137 are the radioisotopes which should be most closely guarded against release into the environment. They both have intermediate half-lives of around 30 years, which is the worst range for half-lives of radioactive contaminants. It ensures that they are not only highly radioactive but also have a long enough halflife to be around for hundreds of years. Strontium-90 mimics the properties of calcium and is taken up by living organisms and made a part of their electrolytes as well as deposited in bones. As a part of the bones, it is not subsequently excreted like cesium-137 would be. It has the potential for causing cancer or damaging the rapidly reproducing bone marrow cells.

24. Strontium-90 is not quite as likely as cesium-137 to be released as a part of a nuclear reactor accident because it is much less volatile, but is probably the most dangerous component of the radioactive fallout from a nuclear weapon.

25. Strontium-90 undergoes beta decay, emitting electrons with energy 0.546 MeV with a half-life of 28.8 years. The decay product is yttrium-90.

(23-25) http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/fisfrag.html#c5 

26. Ternary Fission: is a comparatively rare (0.2 to 0.4% of events) type of nuclear fission in which three charged products are produced rather than two. As in other nuclear fission processes, other uncharged particles such as multiple neutrons and gamma rays are produced in ternary fission.

27. Ternary fission may happen during neutron-induced fission or in spontaneous fission (the type of radioactive decay). About 25% more ternary fission happens in spontaneous fission compared to the same fissioning system formed after thermal neutron capture, illustrating that these processes remain physically slightly different, even after the absorption of the neutron, possibly because of the extra energy present in the nuclear reaction system of thermal neutron-induced fission.

28. True Ternary Fission: A very rare type of ternary fission process is sometimes called “true ternary fission.” It produces three nearly equal-sized charged fragments (Z ~ 30) but only happens in about 1 in 100 million fission events. In this type of fission, the product nuclei split the fission energy in three nearly equal parts and have kinetic energies of ~ 60 MeV. (26-28) http://en.wikipedia.org/wiki/Ternary_fission

29. Howard Morland wrote a magazine article explaining how an “H-Bomb” — or “thermonuclear bomb” — is made, using only publicly available information. In the photo, he is standing on the steps of the US Supreme Court holding a cut-away model of the H-bomb

30. An H-bomb is a three-stage weapon: fission, fusion, and then fission again. The first stage, called the “trigger” (the black ball at the top), is a small plutonium bomb similar to the one dropped on Nagasaki in 1945. The energy release at this stage is mainly due to nuclear fission — because the atoms of plutonium are split. Tritium is often added to the center of the plutonium core to “boost” the fission explosion with some additional fusion energy. Boosted or not, however, the only importance of this first-stage explosion is to irradiate and heat the material in the central column to 100 million degrees Celsius so that a much more powerful fusion reaction can be started there.

31. The second stage explosion is due to nuclear fusion in the central column. The main fusion reaction involves concentrated deuterium and tritium (both heavy isotopes of hydrogen) — which become spontaneously available when neutrons from the first stage explosion bombard a solid material called “lithium deuteride” located in the central column. When this hydrogen-rich mix is heated to 100 million degrees, the deuterium and tritium atoms “fuse” together, releasing enormous amounts of energy. This is the “H” or “thermonuclear” part of the bomb.

32. Then comes the third stage. The fusion reaction gives off an incredible burst of extremely powerful neutrons — so powerful that they can split or “fission” atoms of uranium-238 (called “depleted uranium”) — which is impossible at lower energy levels. This third stage more than doubles the power of the explosion, and produces most of the radioactive fallout from the weapon.

33. Unlike fission bombs, which rely only on nuclear fission, and which can achieve explosions equivalent to thousands of tons of TNT (“kilotons”), the power of an H-bomb or thermonuclear weapon has no practical limit — it can be made as powerful as you want, by adding more deuterium/tritium to the second stage. Most H-bombs are measured in “megatons” (equivalent to the explosive power of MILLIONS of tons of TNT — hundreds of times, or even a thousand times more powerful than a fission bomb).

(29-33) http://www.ccnr.org/Howard_Morland.html

Slides From Jeff Prager’s PowerPoint

People might argue that strontium and barium could be found in building debris and they would be correct however strontium and barium could never, under any circumstances, be found as building debris constituents in a demolition in these quantities.

The levels never fall below 400ppm for Barium and they never drop below 700ppm for Strontium and they reach over 3000ppm for both of them at WTC01-16, Broadway and John Streets. Why?

Barium and Strontium are rare Trace elements with limited industrial uses. The enormous peak in Barium and Strontium concentration at WTC01-16 is readily apparent in the chart at right. The concentration of the two elements reaches 3130ppm for Strontium and 3670ppm for Barium or over 0.3% by weight of the dust. This means that 0.37% of the sample was Barium and 0.31% of the sample was Strontium by weight at that location, WTC01-16, Broadway and John Streets. The Mean concentration for Barium including the very low girder coating samples is 533ppm and for Strontium it’s 727ppm. These are not Trace amounts. They are highly dangerous and extremely toxic amounts. They are also critical components of nuclear fission and the decay process.

Barium and Strontium

Here we’re plotting the concentration of Barium at each location against the Strontium concentration. The correlation between the concentrations of the two elements, Barium and Strontium is extremely high.

The Coefficient of Correlation between the concentration of Barium and Strontium at the outdoor and indoor sampling locations is 0.99 to 2 decimal places (0.9897 to 4 decimal places). So we have a Correlation Coefficient between the concentration of Barium and the concentration of Strontium of 0.9897, or near perfect. The maximum Correlation Coefficient that is mathematically possible is 1.0 and this would mean we have a perfect match between the two factors we’re examining and the data points would lie on a straight line with no variation between them. To obtain a Correlation Coefficient of 0.9897 with this number of measurements (14) around Lower Manhattan is very, very significant indeed. What this means is that we can say that there’s a 99% correlation in the variation in the concentration between these two elements. They vary in lockstep; they vary together. When one element varies so does the other. We can state with absolute mathematical certainty that any change in the concentration of one of these elements, either the Barium or Strontium, is matched by the same change in the concentration of the other. Whatever process gave rise to the presence of either the Barium or the Strontium must have also produced the other as well. Fission is the only process that explains this.

concentration of barium and strontium

Next we come to the detection of measurable quantities of Thorium and Uranium in the dust from the World Trade Center, elements which only exist in radioactive form. The graph below plots the concentration of Thorium and Uranium detected at each sampling location. Again, the last two locations, WTC01-08 and WTC01-09, are for the two girder coating samples. The Uranium concentration follows the same pattern as Thorium, although the graph scale does not show this markedly. Uranium follows the dip at WTC01-03 and WTC01-16 but the highest concentration of Uranium also matches Thorium in the second girder coating, WTC01-09, at 7.57ppm. 7.57 greatly exceeds normal Trace element levels. This equals 93 Becquerels per kilogram. Normal background radiation is approximately 12Bq/kg to 40Bq/kg with 40Bq/kg the highest level we would expect to see. This girder contains more than twice the expected level of uranium. The second girder contained 30.7ppm of Thorium, 6 times as high as the lowest level of that element detected. Thorium is a radioactive element formed from Uranium by decay. It’s very rare and should not be present in building rubble, ever. So we have verifiable evidence that a nuclear fission event has taken place. As we said earlier, Thorium is formed from Uranium be alpha decay. An alpha particle is the same as a Helium nucleus, so this means we have one of the favored fission pathways: Uranium fissioning into a Noble Gas and the balancing elements, in this case Helium and Thorium.

thorium and uranium

The graph of Thorium versus Lithium including the Girder Coatings has exactly the same form as the graph showing Thorium versus Uranium, also including the Girder Coatings. Without the two Girder Coatings the correlation of Thorium to Lithium in the dust is completely linear. We therefore have compelling evidence that this fission pathway of Uranium to Thorium and Helium, with subsequent decay of the Helium into Lithium, has indeed taken place. It is out of the question that all of these correlations which are the signature of a nuclear explosion could have occurred by chance. This is impossible. The presence of rare Trace elements such as Cerium, Yttrium and Lanthanum is enough to raise eyebrows in themselves, let alone in quantities of 50ppm to well over 100ppm. When the quantities then vary widely from place to place but still correlate with each other according to the relationships expected from nuclear fission, it is beyond ALL doubt that the variations in concentration are due to that same common process of nuclear fission. When we also find Barium and Strontium present, in absolutely astronomical concentrations of over 400ppm to over 3000ppm, varying from place to place but varying in lockstep and according to known nuclear relationships, the implications are of the utmost seriousness. Fission occurred in NYC on 911.

thorium vs lithium

This graph (below) shows that (apart from the very high peak in Sodium levels for one of the indoor dust samples) the Sodium and Potassium concentrations both display this now characteristic peak at location WTC01-16, the corner of Broadway and John Street. Sodium has the same peak as Zinc at WTC01-22, the corner of Warren and West, and like Zinc, falls to a minimum in the girder coatings – far below the concentrations found in the dust. Potassium is very similar except its concentration was not a peak at WTC01-02, Water and New York Streets, but somewhat lower than the next location, WTC01-03, State and Pearl Streets. There are clear correlations and relationships here which show that the Potassium and Sodium concentrations did not arise at random. They are products of radioactive decay. Remember that Strontium is produced by a fission pathway that proceeds through the Noble Gas Krypton and then the Alkali Metal Rubidium. Similarly, Barium is produced through Xenon and the Alkali Metal Cesium. We know that Uranium fission favors these pathways through the Noble Gases. Just as radioactive isotopes of Krypton and Xenon decay by beta particle emission to produce Rubidium and Cesium, radioactive isotopes of Neon and Argon also decay by beta emission to produce Sodium and Potassium. We would indeed expect to find anomalous levels of these elements present – what was found is again consistent with the occurrence of nuclear fission.

zinc sodium potassium

We know beyond doubt that the only process that can cause Barium and Strontium to be present in related or correlated quantities and any process that can also cause Barium and Strontium to have such strong relational concentrations across different samples, is nuclear fission. We know that if nuclear fission had occurred that Barium and Strontium would be present and a strong statistical correlation between the quantities of each would be found, and we have that, in spades. What else do we have? Quite a lot.

About 400ppm of Barium and Strontium were measured in two samples of insulation girder coatings (WTC01-08 and 01-09). The concentration of Strontium actually falls somewhat below that of Barium in the second girder sample, WTC01-09, as at WTC01-16, whereas in every other sample the level of Strontium discovered was higher than Barium. Given the elevated levels of Barium daughter products found in the second girder and even the highest level of Uranium found (7.57ppm just West of and behind Tower One) this shows that active fission was still ongoing in the second girder coating, in the very same way as at WTC01-16 and therefore more Barium was found then Strontium. In other samples where the rate of fission had slowed down to give way to decay, the concentrations of Barium and Strontium reverse, due to the different half-lives. Barium isotopes have a shorter half-life then Strontium isotopes so they decay more quickly and after a period of time when no new Barium or Strontium has been deposited, Strontium will exceed Barium. The fact that more Barium then Strontium was still found at WTC01-16 and WTC01-09 shows that the overall nuclear processes taking place were somewhat favoring Barium over Strontium and hence Zinc as well. The tighter cluster of Barium (400-500ppm) and Strontium (700-800ppm) concentrations across widely separated sampling locations in Lower Manhattan is cast iron proof that Nuclear Fission occurred. We know that Barium and Strontium are the characteristic signature of fission; they are formed by two of the most common Uranium fission pathways. The fact that their concentrations are so tightly coupled means that their source was at the very epicenter of the event which created the dust cloud that enveloped Manhattan. This was not a localized preexisting chemical source which would only have contaminated a few closely spaced samples and left the remaining samples untouched. The very high concentrations of Barium and Strontium at location WTC01-16 shows that active nuclear fission was still ongoing at that spot; the dust was still “hot” and new Barium and new Strontium were being actively generated, actively created by transmutation from their parent nuclei.

The presence of Thorium and Uranium correlated to each other by a clear mathematical power relationship – and to the other radionuclide daughter products such as sodium, potassium, zinc, lithium, strontium and barium – leaves nothing more to be said. This type of data has probably never been available to the public before and it’s an unprecedented insight into the action of a nuclear device. September 11th, 2001, was the first nuclear event within a major United States city that we have incontrovertible proof for and this is without question the most closely held secret surrounding the events of September 11th, 2001.

Anyone seriously interested in 911 truth will naturally be compelled to fully and thoroughly investigate the serious implications raised by this report personally, and I strongly encourage this. The material is complex yet if I can understand it anyone can.

No one promised us that the answers to 911 would come easily.

There’s more compelling and incontrovertible evidence I’d like to cover now. We’ll discuss the elements:

 Lanthanum

Vanadium

Yttrium

Chromium

Nickel

Copper

Lead

Zinc

In this graph Zinc has been divided by a factor of 10 to avoid losing all the detail in the scaling if the ‘Y’ axis instead went up to 3000ppm. The variation in Lead is matched by the variation in Zinc almost perfectly across all sampling locations, including the Indoor and Girder Coating samples.

The concentration of Copper follows that of Zinc with one distinct exception at WTC01-15, Trinity and Cortlandt Streets, just several hundred feet East of Building Four. There seem to be two Copper-Zinc relationships. If some of the Zinc was being formed by beta decay of Copper, then the high Copper at WTC01-15 could reduce Zinc, since formation of Zinc by that decay pathway would be retarded by material being held up at the Copper stage, before decaying on to Zinc. Therefore this graph does confirm that some of the Zinc was indeed being formed by beta decay of Copper.

This would at least be a very small mercy for the civilian population exposed in this event since the Zinc isotopes formed from Copper are stable, i.e. they are not radioactive.

zinc lead copper

The copper found in the Ground Zero dust is indicative of nuclear fission. If we plot the concentration of Copper against Zinc and Nickel, we obtain the graphs pictured here. The concentration of Nickel was almost the same everywhere, except for the peak of 88ppm matched by the Copper peak of 450ppm.

The Copper – Zinc relationship is very interesting, showing in fact two distinct relationships again depending on isotopic composition. There are two radioactive isotopes of Copper (Cu 64 and Cu 67) with short half-lives of 12.7 hours and 2.58 days respectively which decay into Zinc isotopes. The other two isotopes (Cu 60 and Cu 61) decay the other way by positron emission into Nickel and in fact Cu 64 goes both ways, into both Nickel and Zinc. This would explain why there strongly appear to be two Copper – Zinc relationships.

The decay of radioactive Copper by beta particle emission into Zinc would have been another source for the extraordinarily high concentrations of Zinc found in the World Trade Center Dust. copper vs zinc

Lanthanum is the next element in the disintegration pathway of Barium, situated between Barium and Cerium. The concentration of Barium versus Lanthanum is plotted in the graph below.

This graph is almost identical in form to the relationship between Barium and Cerium. A similar inverse exponential (cubic) relationship is clearly visible. In this case, Lanthanum is approximately equal to 5 times the cube root of Barium.

Lanthanum has a much shorter half-life then Cerium; most of its isotopes have a half-life of only a few hours whereas beta decay by Cerium is measured in half-life periods of a month to 10 months. Cerium’s beta decay going back to Lanthanum occurs more quickly but Lanthanum’s beta decay going back to Barium occurs in a similar time-scale to that – a few hours, so we are left with the net effect of Lanthanum’s beta decay being much quicker than that of Cerium, so the concentration of Cerium remaining was higher than that of Lanthanum.

barium vs lanthanum

Yttrium is also a very rare element and should not be present in dust from a collapsed office building. Yttrium is the next decay element after Strontium. If we plot concentration of Strontium against Yttrium, we see what happens in the graph below. Strontium 90 has a much longer half-life (28.78 years) than most Barium isotopes so we would not expect to see as high a concentration of Strontium’s daughter products as those that are produced from Barium. This is in fact what we see – the concentration of Cerium (next daughter product to Barium) is higher than Yttrium, the next daughter product to Strontium.

yttrium

The presence of Chromium is also a telltale signature of a nuclear detonation. Its concentration is shown plotted against Zinc and Vanadium in the graphs below.

There is a strong correlation between the Zinc and the Chromium concentration. The Coefficient of Correlation is high, 0.89.

There is also an indication of strong correlation between Chromium and Vanadium within 6 points of lying on an almost perfect exponential curve, with one outlier, WTC01-03, the corner of State and Pearl Streets, of 42.5ppm where the Vanadium concentration reached its highest level.

chromium vs zinc

Looking at the data for Zinc we see that the Zinc concentration for WTC01-02, Water Street at the intersection of New York, is 2990ppm and this immediately stands out. In fact, for the outdoor samples, Zinc is the most common Trace element at all sampling locations, with generally between 1000ppm and 2000ppm except for this spike of nearly 3000ppm at WTC01-02.

This equates to an enormous concentration of Zinc. 0.1% to 0.2% of Zinc in the dust overall and at WTC01-02, 0.299% of the dust was Zinc. This exceeds the concentration of the supposed “non-Trace” element Manganese and Phosphorous and almost equals the elevated Titanium concentration of 0.39% at that same location.

What process produced the zinc?

If we include the data for WTC01-16, the Correlation Coefficient between the Zinc and Barium concentration is 0.007 to 3 decimal places, from which we can conclude that there is absolutely no correlation at all. But if we exclude that one sampling location, where Barium and Strontium concentrations peaked, the correlation coefficient between Zinc and Barium is 0.96 to two decimal places and between Zinc and Strontium, 0.66 to two decimal places. So what happened?  zinc strontium

This shows that the Zinc and Barium concentrations are closely related and if we exclude what must have been an extraordinary event at WTC01-16 as an outlier, the correlation is very good. The Product Moment Correlation Coefficient is 0.96. The concentration of Zinc is now 3 times the concentration of Barium but the correlation between Zinc and Strontium is not so clear, showing that the relationship must be more indirect. This is to be expected since Barium and Strontium are produced by different nuclear fission pathways.

In spent nuclear fuel, Strontium is found as Strontium Oxide (SrO) – the Strontium produced by the nuclear fission explosion under the Twin Towers will certainly have been oxidized to SrO by the heat. SrO is extremely soluble in water, so some of the Strontium concentration results obtained may have been distorted by the rain water which fell on New York a few days after the towers were destroyed.

There is a very strong linear relationship between Barium and Zinc found at the World Trade Center. This may indicate that a closely related nuclear sub-process gave rise to them, which produced 3 times as much Zinc as Barium by weight. If so, that would be a very unusual nuclear event.

There is a lesser known nuclear process that accounts for this, which would be indicative of very high energies indeed. This process is known as Ternary Fission.